Fast computation of the $N$th term of an algebraic series in positive characteristic

نویسندگان

  • Alin Bostan
  • Gilles Christol
  • Philippe Dumas
چکیده

We address the question of computing one selected term of an algebraic power series. In characteristic zero, the best known algorithm for computing the Nth coefficient of an algebraic series uses differential equations and has arithmetic complexity quasi-linear in √ N . We show that in positive characteristic p, the complexity can be lowered to O(logN). The mathematical basis of this dramatic improvement is a classical theorem stating that a formal power series with coefficients in a finite field is algebraic if and only if the sequence of its coefficients can be generated by an automaton. We revisit and enhance two constructive proofs of this result. The first proof uses Mahler equations; their size appear to be prohibitively large. The second proof relies on diagonals of rational functions; we turn it into an efficient algorithm, of complexity linear in logN and quasi-linear in p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

Analytic extension of a $N$th roots of $M$-hyponormal operator

In this paper‎, ‎we study some properties of analytic extension of a $n$th roots of $M$-hyponormal operator‎. ‎We show that every analytic extension of a $n$th roots of $M$-hyponormal operator is subscalar of order $2k+2n$‎. ‎As a consequence‎, ‎we get that if the spectrum of such operator $T$ has a nonempty interior in $mathbb{C}$‎, ‎then $T$ has a nontrivial invariant subspace‎. ‎Finally‎, ‎w...

متن کامل

Rings of Singularities

This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...

متن کامل

Relationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications

ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.00545  شماره 

صفحات  -

تاریخ انتشار 2016